

MODÉLISATION DU CHAMP DE VITESSE EN AMONT D'UNE TURBINE À AXE HORIZONTAL

Philippe Druault, Jean-François Krawczynski ('Alembert UMR 7190, SU) ∂ **Collaboration : Grégory Germain (IFREMER)**

jean-francois.krawczynski@sorbonne-universite.fr, 2024

2ème Rencontre de l'éolien en mer, Alliance Sorbonne Université, 29 mai 2024

Production d'énergie, dimensionnement, fatigue structurelle (durée de vie) [1/3] Des influences multi-physiques variées

Puissance instantanée d'une éolienne :

$$
P(t) = \overline{P} + P'(t) < \frac{1}{2} \eta_{\text{Betz}} \rho A V_{\text{vent}}^3
$$

Influences multi-physiques :

- Vent (évènements discrets, turbulence)
- Aérodynamique (rotation, sillage, décrochage)
- Structure (gravité/inertie, élasticité, fondations, ancrage)
- Vagues (régulières, irrégulières)

Production d'énergie, dimensionnement, fatigue structurelle (durée de vie) [2/3] Similitude Eolienne / Hydrolienne

Puissance instantanée d'une éolienne :

$$
P(t) = \overline{P} + P'(t) < \frac{1}{2} \eta_{\text{Betz}} \rho A V_{\text{vent}}^3
$$

Influences multi-physiques :

- Vent (évènements discrets, turbulence)
- Aérodynamique (rotation, sillage, décrochage)
- Structure (gravité/inertie, élasticité, fondations, ancrage)
- Vagues (régulières, irrégulières)

Objectifs : mieux comprendre ⇒ comment l'écoulement est perturbé en amont d'une turbine en fonctionnement

Production d'énergie, dimensionnement, fatigue structurelle (durée de vie) [3/3] Influence des inhomogénéités / instationnarités sur le chargement dynamique

A. Rezaeiha et al. / Renewable Energy 114 (2017)

2ème Rencontre de l'éolien en mer, Alliance Sorbonne Université, 29 mai 2024

Caractérisation expérimentale Bassin à recirculation de l'IFREMER *Renewable Energy 224 (2024) 120107*

Objectif de l'expérience : reproduire des courants marins (cisaillement + turbulence) observés en Manche

Mesures simultanées du champ de vitesse par PIV et de la poussée $C_T^{}=$ $T \cdot \overline{x}$ $1/2\rho\pi R^2U_{\text{ref}}$ blades, but had limitations upstream of the hub. They have then proposed to couple the current self-similar model in the current self-similar model α $\begin{array}{c}\n\rightarrow\\
\end{array}$ front of the turbine. Se par PIV et de la poussee $C_T = \frac{1}{100}$ $\frac{1}{2}$ $\frac{1}{2}$

Effet de l'induction sur le profil cisaillé Influence de la vitesse de rotation

$$
TSR = \frac{\Omega D}{2U_{\infty}} = \{3, 4, 5\} ; \text{ Free :}
$$

écoulement sans turbine

- ‣ Blocage proportionnel à la vitesse de rotation mais,
- ‣ Invariance des profils
- ‣ Déficit le plus fort sur l'axe du hub
- Asymétrie en présence de cisaillement

Druault et al. / Renewable Energy 224 (2024)

2ème Rencontre de l'éolien en mer, Alliance Sorbonne Université, 29 mai 2024

Modélisation de l'induction axiale Modèle auto-similaire : comparaison avec les expériences

- Modèle auto-similaire(a) de blocage induit par le rotor :

$$
U(x,r) = U_{\text{free}}(x,r) - \frac{\langle U \rangle}{U_{\infty}} U_b(x,r)
$$

avec,

$$
U_b(x, r) = 1 - a(0, x)f(\epsilon), \ \epsilon = \frac{r}{r_{1/2}(x)}
$$

- Ecarts les plus importants observés dans la région |*z**| < *D*hub/2
- Le déficit de vitesse est en revanche très bien capturé pour |*z**| ≫ *D*hub/2
- ⇒ Nécessité de modéliser le blocage du hub avec un terme additionnel

⁽a) Troldborg & Meyer Forsting / Wind Energy 20 (2017) Druault et al. / Renewable Energy 224 (2024)

Modélisation de l'induction axiale Modèle hybride : comparaison avec les expériences

- Couplage du modèle autosimilaire(a) avec un modèle de blocage du hub(b):

$$
U(x,r) = U_{\text{free}}(x,r) - \frac{\langle U \rangle}{U_{\infty}} U_b(x,r) - U_{\text{hub}}(x,r)
$$

$$
avec, U_{\text{hub}}(x, r) = -\nabla \phi, \phi
$$

potential des vitesse

- **Erreurs** $U(x, r) - U_{\text{mes}}$ *U*mes $<$ 3 %
- Ecarts liés à la prise en compte de coefficients de poussée *CT* globaux ?

(a) Troldborg & Meyer Forsting / Wind Energy 20 (2017) (b) Anderson et al. / J. Phys.: Conf. Series 1618 (2020) Jouenne et al. / Ocean Engineering 268 (2023) Druault et al. / Renewable Energy 224 (2024)

Conclusions // Perspectives Analyse et modélisation des effets de l'induction d'une turbine

- ‣ Capable de déterminer les changements induits sur le champ de vitesse moyenne en fonction : (a) de la vitesse de rotation de la turbine, (b) de la nature du profil de vitesse axiale cisaillé
- Pour des turbines à large $\frac{100}{D}$: prise en compte séparée du hub par un terme additionnel de déficit de vitesse *D*hub *D*

‣ Prise en compte de coefficients de poussée locaux ?

//

Conclusions // Perspectives **Estimation des efforts locaux** in the definition of aerodynamic forces:

 $BEM = conservation$ de la quantité de mouvement (MT \equiv PFD) + théorie de la pale (BET)

Hypothèses fortes : écoulement incompressible et axisymétrique, fluide homogène et non visqueux, charges axisymétriques sur un disque actionneur, etc. nt-incompressible et axisymétrique, fluide e *de allegated* seems the and que accident che, seems that they are annular streamtubes. Hypotheses fortes : ecoulement incompressible et axisym $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ of the component in the book of the book of Ω in the next section are based on the next section are based on the next section are based on the ion vi \mathbf{L} convertion and the control to the control to the control of the control to the control to the control to the c

Sensibilité à la détermination de l'angle d'attaque ≡ à la vitesse relative incidente area *dS* = *cdr*. To link the two theories, it is thus assumed that if the rotor consists of *B* blades *9.3.2 Derivation* létermination de l'angle c \overline{a} ² ² ≀ mination de l'angle d'attaque = à la vitesse re

MERCI POUR VOTRE ATTENTION

A. Rezaeiha et al. / Renewable Energy 114 (2017) Troldborg & Meyer Forsting / Wind Energy 20 (2017) Anderson et al. / J. Phys.: Conf. Series 1618 (2020) Jouenne, Druault, Krawczynski & Germain / Ocean Engineering 268 (2023) Druault, Krawczynski, Çan & Germain / Renewable Energy 224 (2024)

jean-francois.krawczynski@sorbonne-universite.fr, 2024 Expertise : Développement d'outils d'analyse et modélisation des champs de vitesse (expériences ou simulations numériques) et des efforts exercés sur la turbine

2ème Rencontre de l'éolien en mer, Alliance Sorbonne Université, 29 mai 2024